Ganeti
The Cluster-based Virtualization Management Software

Helga Velroyen (helgav@google.com)
Klaus Aehlig (aehlig@google.com)

August 24, 2013
Virtualization

To build your VMs ("instances"), you would take . . .
Virtualization

To build your VMs ("instances"), you would take . . .

- a bunch of physical machines ("nodes")
Virtualization

To build your VMs ("instances"), you would take . . .

- a bunch of physical machines ("nodes")
- some hypervisor, say Xen
Virtualization

To build your VMs ("instances"), you would take . . .

- a bunch of physical machines ("nodes")
- some hypervisor, say Xen
- some way to replicate storage, say DRBD
Enter Ganeti

While all this works on its own, Ganeti helps
Enter Ganeti

While all this works on its own, Ganeti helps

- to get there
 - uniform interface
Enter Ganeti

While all this works on its own, Ganeti helps

- to get there
 - uniform interface
- Hypervisors: Xen, kvm, . . .
- Storage: drbd, lvm, file, . . .
- Network
Enter Ganeti

While all this works on its own, Ganeti helps

- to get there
 - uniform interface
 hypervisors/storage/...
 - policies, balanced allocation
Enter Ganeti

While all this works on its own, Ganeti helps

- to get there
 - uniform interface
 - hypervisors/storage/…
 - policies, balanced allocation
 - Instance memory/disk size
 - CPU oversubscription
 - tag-exclusion
 - “Don’t put both name servers on the same node!”
Enter Ganeti

While all this works on its own, Ganeti helps

- to get there
 - uniform interface
 hypervisors/storage/…
 - policies, balanced allocation

- and to stay there
Enter Ganeti

While all this works on its own, Ganeti helps

- to get there
 - uniform interface
 - *hypervisors/storage/…*
 - policies, balanced allocation

- and to stay there
Enter Ganeti

While all this works on its own, Ganeti helps

- to get there
 - uniform interface

 hypervisors/storage/…

 - policies, balanced allocation

- and to stay there
 - failover instances
Enter Ganeti

While all this works on its own, Ganeti helps

- to get there
 - uniform interface *hypervisors/storage/…*
 - policies, balanced allocation *keeping N + 1 redundancy*
- and to stay there
 - failover instances
Enter Ganeti

While all this works on its own, Ganeti helps

- to get there
 - uniform interface
 hypervisors/storage/

- policies, balanced allocation
 keeping $N + 1$ redundancy

- and to stay there
 - failover instances
 - and evacuate nodes
Enter Ganeti

While all this works on its own, Ganeti helps

- to get there
 - uniform interface
 hypervisors/storage/…
 - policies, balanced allocation
 keeping \(N + 1 \) redundancy
- and to stay there
 - failover instances
 and evacuate nodes
 - rebalance
Enter Ganeti

While all this works on its own, Ganeti helps

- to get there
 - uniform interface
 - hypervisors/storage/…
 - policies, balanced allocation
 - keeping $N + 1$ redundancy
- and to stay there
 - failover instances and evacuate nodes
 - rebalance
 - Restart instances after power outage
Enter Ganeti

While all this works on its own, Ganeti helps

- to get there
 - uniform interface
 - hypervisors/storage/…
 - policies, balanced allocation
 - keeping \(N + 1 \) redundancy
- and to stay there
 - failover instances
 - and evacuate nodes
 - rebalance
 - Restart instances after power outage
 - …
Basic Interaction—Cluster creation

- `gnt-cluster init -s 192.0.2.1 clusterA.example.com`
Basic Interaction—Cluster creation

- `gnt-cluster init -s 192.0.2.1 clusterA.example.com`
- `gnt-node add -s 192.0.2.2 node2.example.com`
Basic Interaction—Cluster creation

- `gnt-cluster init -s 192.0.2.1 clusterA.example.com`
- `gnt-node add -s 192.0.2.2 node2.example.com`
- `...`
Basic Interaction—Cluster creation

- gnt-cluster init -s 192.0.2.1 clusterA.example.com
- gnt-node add -s 192.0.2.2 node2.example.com
- ...
- gnt-instance add -t drbd -o debootstrap -s 2G --tags=foo,bar instance1.example.com
Basic Interaction—Node maintenance

Evacutating a node

- `gnt-node modify --drained=yes node2.example.com`
- `gnt-node migrate -f node2.example.com`
- `gnt-node evacuate -f -s node2.example.com`
- `gnt-node modify --offline=yes node2.example.com`
- `hbal -L -X`
Basic Interaction—Node maintenance

Evacutating a node

- `gnt-node modify --drained=yes node2.example.com`
- `gnt-node migrate -f node2.example.com`

Using the node again

- `gnt-node modify --online=yes node2.example.com`
- `hbal -L -X`
Basic Interaction—Node maintenance

Evacutating a node

- `gnt-node modify --drained=yes node2.example.com`
- `gnt-node migrate -f node2.example.com`
- `gnt-node evacuate -f -s node2.example.com`
Basic Interaction—Node maintenance

Evacutating a node

- `gnt-node modify --drained=yes node2.example.com`
- `gnt-node migrate -f node2.example.com`
- `gnt-node evacuate -f -s node2.example.com`
- `gnt-node modify --offline=yes node2.example.com`
Basic Interaction—Node maintenance

Evacutating a node

- `gnt-node modify --drained=yes node2.example.com`
- `gnt-node migrate -f node2.example.com`
- `gnt-node evacuate -f -s node2.example.com`
- `gnt-node modify --offline=yes node2.example.com`

Using the node again

- `gnt-node modify --online=yes node2.example.com`
Basic Interaction—Node maintenance

Evacutating a node

- `gnt-node modify --drained=yes node2.example.com`
- `gnt-node migrate -f node2.example.com`
- `gnt-node evacuate -f -s node2.example.com`
- `gnt-node modify --offline=yes node2.example.com`

Using the node again

- `gnt-node modify --online=yes node2.example.com`
- `hbal -L -X`
Jobs

cli
gnt-cluster
gnt-node
gnt-instance
...

...
Jobs
Jobs
Jobs

- RAPI
- LUXI
- cli
- config
- queue
- lock
- masterd
Jobs

- REST
- JSON over HTTP

RAPI → LUXI

config
queue
lock
masterd
Jobs

![Diagram showing the interaction between RAPI, cli, lock, queue, and masterd.](image-url)
RPC

![Diagram of RPC system]

- RAPI
- cli
- master node
- config
- queue
- lock
- masterd

Overview
Architecture
Customization
In Production
Current development
Community
Conclusion
RPC

master node

cli

RAPI

config
queue
lock
masterd

vm-capable node

RPC

noded

backends
- hypervisors
- bdev
- ...

Architecture

Overview

Customization

In Production

Current development

Community

Conclusion
RPC

 DIAGRAM:

 RAPI
 cli
 master node

 config
 queue
 lock
 masterd

 noded

 vm-capable node
Configuration

- hosts w/ roles, status, ...
- instances w/ hosts, disks, ...
- policies
Configuration
Configuration

Overview

Architecture

Customization

In Production

Current development

Community

Conclusion

cli

masterd

lock

queue

config

confd

noded

vm-capable node

master candidate

confd

config queue

master node

RAPI

cli

masterd

confd

config queue

noded

vm-capable node
Configuration

confd protocol
 • upd
 • ask all, take best answer
 • configurations time stamped
Configuration

- RAPI
- cli
- master node
- confd
- config
- queue
- lock
- masterd
- confd
- config
- queue
- master candidate
- noded
- vm-capable node

Diagram showing the flow of processes and components in the configuration system.
Configuration

- cli
- masterd
- lock
- queue
- config
- RAPI
- master node
- ssconf
- confd
- config
- queue
- lock
- masterd
- ssconf
- ssconf
- flat file
- "static" information
- nodes
- instance, w/o location
- ...
- vm-capable node
Configuration
Roles and Statuses

Nodes can serve different roles.
Nodes can, and usually do, take both roles.
Roles and Statuses

Nodes can serve different roles. *(Nodes can, and usually do, take both roles.)*

- VM-hosting nodes
 - VM-capable
 - grouped in “node groups”
Roles and Statuses

Nodes can serve different roles. *(Nodes can, and usually do, take both roles.)*

- VM-hosting nodes
 - VM-capable
 - grouped in “node groups”
- Administrative nodes
 - master capable *(policy decision)*
 - master candidate *(have a full copy of the live configuration)*
 - master *(manages all operations on the cluster)*
Roles and Statuses

Nodes can serve different roles.
(Nodes can, and usually do, take both roles.)

- VM-hosting nodes
 - VM-capable
 - grouped in “node groups”
- Administrative nodes
 - master capable (*policy decision*)
 - master candidate (*have a full copy of the live configuration*)
 - master (*manages all operations on the cluster*)

Independently of its role, nodes can be in a different statuses: online, drained, offline
Guest OS Interface

Ganeti is agnostic about the guest OSes; it just expects information to be provided. *(on directory per guest OS)*

- executables: create, import, export, rename, verify
- text files: ganeti_api_version, variants.list

Executables are provided with information via the environment.

- OS_VARIANT
- HYPERVISOR
- DISK_COUNT, DISK_0_PATH, DISK_1_PATH, ...
- ...
Available OS Definitions

There exist quite a few implementations of the guest OS interface.
Available OS Definitions

There exist quite a few implementations of the guest OS interface.

- debootstrap (git://git.ganeti.org/instance-debootstrap.git)
 glorified call of debootstrap(8)
 sfdisk, mkswap, mke2fs, ...; /etc/{hostname, ...}
Available OS Definitions

There exist quite a few implementations of the guest OS interface.

- **debootstrap** (git://git.ganeti.org/instance-debootstrap.git)
 A glorified call of debootstrap(8)
 sfdisk, mkswap, mke2fs, ...; /etc/{hostname, ...}

 Installation done by a helper VM
 - target disk, with base image, as additional disk
 - floppy with customization
Available OS Definitions

There exist quite a few implementations of the guest OS interface.

- **debootstrap** (git://git.ganeti.org/instance-debootstrap.git)
 Glorified call of debootstrap(8)
 sfdisk, mkswap, mke2fs, ...; /etc/{hostname, ...}

 Installation done by a helper VM
 - target disk, with base image, as additional disk
 - floppy with customization

- **ganeti-instance-image** (https://code.osuosl.org/projects/ganeti-image)
 Image-based; images created with tar(1) or dump(8)

- **ganeti-os-defs** (http://sourceforge.net/p/ganeti-os-defs/home/Home/)

- ...
Ways to customize Ganeti

- Hooks
- Allocator
- ...
Hooks

- hook scripts to customize cluster operations
- useful for synching with external systems
- pre phase: e.g. for authorization
- post phase: e.g. for logging, billing, setting passwords
- examples: cluster-verify-post.d, node-add-pre.d
Allocation

- Where to put an instance?
- protocol:
 - JSON over pipes
 - input: cluster’s state + request-specific info
 - output: suggestions where to place which instance
- supported requests: allocate, relocate, change-group, node-evacuate, multi-allocate
Ganeti in Production

What should you add?

- Monitoring:
 - Check host disks, memory, load

- Automation:
 - Trigger events (evacuate, send to repairs, readd node, rebalance)

- Configuration Management:
 - Automated host installation / setup

- Self service use:
 - Graphical interface (e.g. Ganeti Web Manager)
 (http://ganeti-webmgr.readthedocs.org/en/latest/)
 - Instance creation and resize
 - Instance console access
Production Cluster

As we use it in a Google Datacenter
2.7 (Current Release)

- Network management (contributed by grnet.gr)
- Exclusive storage
- Opportunistic locking
- Restricted commands
- Monitoring agent
Monitoring Agent

- integrated monitoring service
- implemented in 2.7, 2.8, 2.9
- new daemon, runs on all nodes, speaks http
- provides information about the cluster’s status
- collectors for: drbd, disk status, LVM, instance status (xen)
- Google Summer of Code: CPU load monitoring
2.8 (Beta)

- Improved support of non-lvm storage
- Downgrading
- More work on monitoring daemon
- Autorepair tool
- Hroller
Hroller

• Scheduler for rolling reboots
• Partitiones cluster into groups of nodes that can be rebooted simultaneously
• various modes: default, full evacuation, offline-maintenace
• options for non-redundant instances
2.9 (Alpha)

- DRBD 8.4 support
- Improved support of non-lvm storage handling
- Improvements of monitoring agent
- Improvements of hroller
Future

Just plans, no promises!

- Hot-plugging
- Automatic updates
- More fine-grained job-queue management
- Storage pools
Open Source Ganeti

- Ganeti has been open source since 2007
- Relatively big community of external users and contributors
- People running Ganeti:
 - Google (Corporate Computing Infrastructure) (https://www.youtube.com/watch?v=TELArK6SmyY)
 - grnet.gr (Greek Research & Technology Network)
 - osuosl.org (Oregon State University Open Source Lab)
 - fsffrance.org (Free Software Foundation France)
Ganeti Development Process

- Time-based release process, one freeze every 3 months
- Code reviews over the mailing list
- Discussion of design documents publicly on the mailing list
- Video-conferences with bigger contributors
- Public continuous build system\(^1\)
- QA scripts public to be re-used

\(^1\)machines provided by grnet.gr, run by Google
Recent Events 2013

- Google Summer of Code, 2013
 - Better Openvswitch support
 - CPU load monitoring
Upcoming Events

- GanetiCon, Athens, Sep 2013
 (https://sites.google.com/site/ganeticon/)

- LinuxCon North America, New Orleans, Sep 2013, introductory talk
 (http://events.linuxfoundation.org/events/linuxcon-north-america/program/schedule)

- LinuxCon Europe, Edinburgh, UK, Oct 2013, introductory talk
 (http://events.linuxfoundation.org/events/linuxcon-europe)

- LISA, Washington D. C., Nov 2013, workshop / class
 (https://www.usenix.org/conference/lisa13)

A list of publications from previous events (slides, recordings) can be found in our wiki. (https://code.google.com/p/ganeti/wiki/Publications)
Conclusion

- Check us out at https://code.google.com/p/ganeti/
- Or just search for "Ganeti"
- We are around on FrOSCon today and tomorrow!

©2010-2013 Google
Use under GPLv2+ or CC-by-SA
Some images borrowed / modified from Lance Albertson and Guido Trotter