Xen Summit 2008 Tokyo

lustin Pop Ganeti team **Google Switzerland**

Overview

- Introduction
- Abstract model
- Scaling the machine pool size
 - **■**Up to 10
 - ■Up to 100
 - ■Up to 1,000
- VM types
- Hardware evolution
- Ganeti in Google

Introduction

Use cases of virtualization:

- •traditional:
 - improved resource utilization
 - •consolidate low-usage machines
- •but the technology has matured:
 - •focus moves to higher layers (management)
 - •large numbers of both physical and virtual machine
 - more uses (VM types)

Disclaimer:

- •the presentation content is not representative of Google's usage of virtualization
- •the presentation solely refers to the use of virtualization in Google for internal, corporate purposes and not external services or products (e.g. www.google.com)

Abstract model

Scaling the number of machines

The machine pool size influences the ROI for different features

- •at lower sizes, efficiency at lower levels is most important
- •growing the number of machines increases the importance of the management layer
- •HW failure rate importance varies
- automation cost is more-or-less constant, but benefits vary greatly

Up to 10 physical machines

Main characteristics:

- Hypervisor and HW efficiency is paramount
- Small number of machines translates into:
 - small customer base
 - ■low number of HW failures
 - •reduced benefit of automation
 - greater chance of same HW profile

Challenges:

application compatibility

Up to 100 physical machines

Similar to non-virtualized environments:

- component failure is rare, but part of normal life
- automation benefits start to show (deployment, configuration, etc)

Specific to virtual environments:

- •diverse configurations and machine mobility mean VMs will be shifted around and their HW profile can change dynamically
- •cost savings are split between resource utilization and operational gains

Challenges:

- accommodating various customer types
- integration of VM and non-VM environments

Up to 1,000 physical machines

Number of machines affect cost profile:

- •HW costs are linear, but operations costs no longer
- Automation and standardization across all layers have big benefits
 - •the hypervisor and HW layers can be deeply abstracted by the management tools
 - •automation of all procedures is paramount to keeping the VM environment healthy

Challenges:

- •multiple customers, same management toolset
- software upgrades for physical machines
- dealing with multiple HW generations

VM types

Deployments will have multiple VM types:

- server/desktop/lab/etc.
- central administration versus end-user administration
- integration of all these into the same machine pool

VM types - server

- •stable, long-life
- monitoring is important
- •resource usage has smoother variation
- •usually continuous operation

VM types - desktop

- ·less stable life
- bursty usage
- •'business hours' type of operation
- •GUI/user friendly interface to VM-specific operations very important
- •monitoring integration good for debugging, but less for the big mass of endusers

VM types - lab

- short lived
- •end-user provisioning out of own resource pool
- monitoring less useful than quick provisioning
- •snapshot, rollback and similar features important

Keeping pace with hardware

Commodity hardware:

- •rapidly changing specifications:
 - cores
 - memory
 - disk size
- •and not so rapid:
 - network/disk bandwidth
 - single-CPU speed

This results in asymmetric growth:

- •resource allocation needs to handle this
- •cluster architecture changes over time

Ganeti @ Google

Design goals and principles

- sits between hardware layer and integration layer
- •fully automate node- and cluster-level resource management
- needs base OS and hypervisor
- •does not provide monitoring, access controls or global provisioning (across clusters)
- •principles:
 - •not dependent on specific hardware (e.g. external shared storage)
 - •scales (almost) linearly with the number of systems

Questions & Answers